Use of Imaging Device to Assist Autonomous Vehicles

sdmay18-03@iastate.edu

Introduction

- Souparni Agnihotri
- Ashley Dvorsky
- Eric Himmelblau
- Fahmida Joyti
- John Orefice
- Bowen Zhang
- Joseph Zambreno Advisor
- SmartAg Client

Project Needs

- SmartAg currently has an autonomous tractor which is guided by a preset path planning algorithm
- This does not take into account any changes to the environment and must be manually set for each new farm

Project Goal

- Utilize a neural network to detect objects
- Combine with stereo video to find locations
- Provide data in a form usable by the path planner

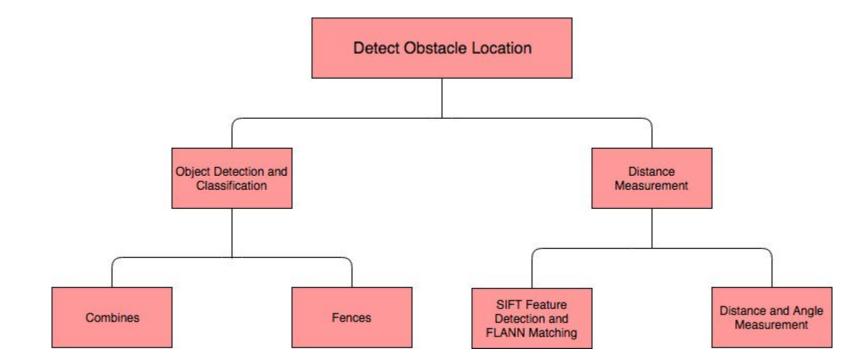
Design Requirements

Functional Requirements

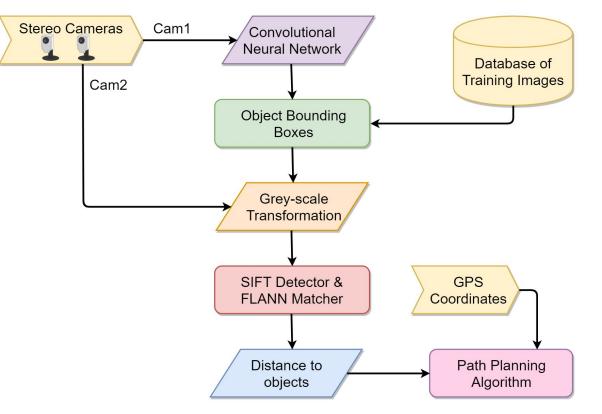
- The image processing system detects objects including fences and combines in real-time
- Depth determination system calculates relative distance to the object using the stereo cameras
- Information can be used to add object positions to the path planning map

Nonfunctional Requirements

- Speed of real-time object detection system ≥ 15 FPS (NVIDIA Jetson TX2)
- System need to fit into a modern tractor
- System should be able to support both manual and autonomous driving
- Must be powered by the tractor electrical system
- Needs to be easy to use by the target audience (farmers)

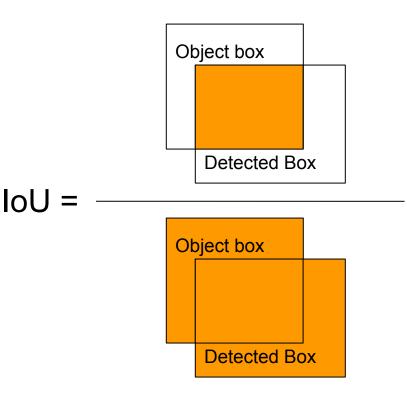

Operation Environment

- Our software will be integrated in the SmartAg Virtual Environment
- Assuming fair weather conditions for normal tractor use
 - If a farmer would not take the tractor out, our product is also not safe to be used



Design Approach

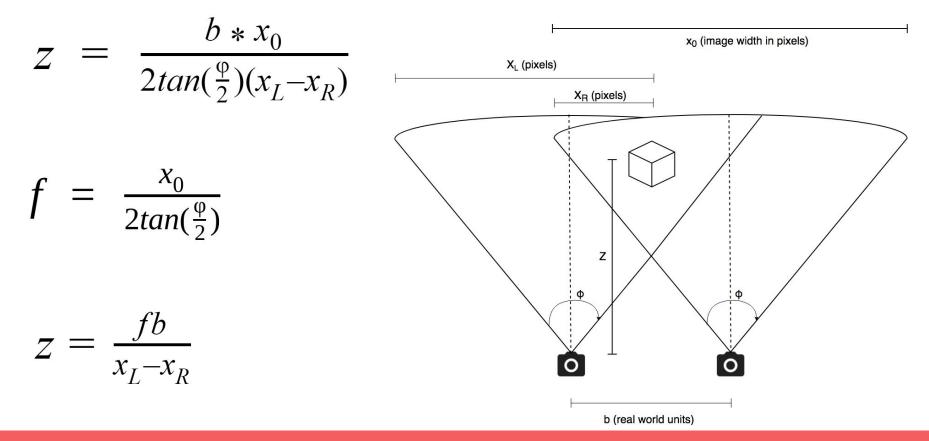
Functional Decomposition


Block Diagram

Technical Details

Training MobileNet SSD

- Training set: 2200 images
- Testing set: 80 images
- Classification measure:
 - IoU = Area of intersection / Area of union
 - True positive (TP): IoU > 0.5
 - False positive (FP): IoU <= 0.5
 - Precision = TP / (TP + FP)
 - Mean Average Precision (mAP) = $\frac{1}{|classes|}$ $\sum_{c} \frac{TP(c)}{TP(c) + FP(c)}$



Distance Measurement

- Object matching with SIFT and FLANN
- Distance measurement using camera intrinsics and image disparity

Distance Measurement

Software

- OpenCV
 - Open source computer vision library
 - Manipulation of video feed.
 - Implementing SIFT & FLANN algorithm
- Tensorflow Object Detection API
 - Open source framework built on top of tensorflow.
 - \circ ~ Used widely for satisfying computer vision needs.
- MobileNet SSD
 - Fastest and accurate results based on previous research.

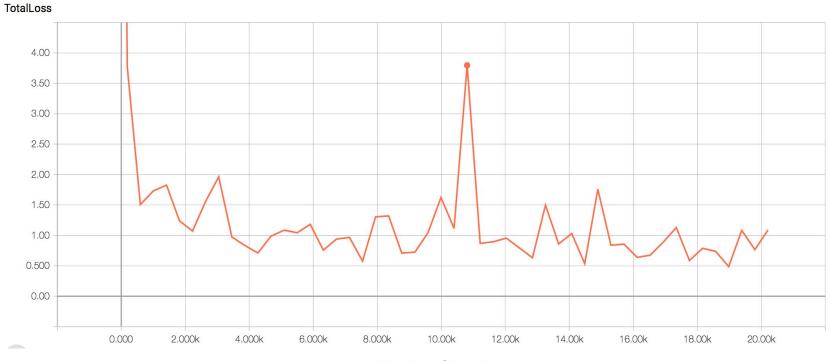
Hardware

- Identical USB Cameras
 - $\circ \quad \ \ \mathsf{Provided} \ \mathsf{by} \ \mathsf{our} \ \mathsf{client}$
- Amazon EC2 Instance
 - Contains GPU which speeded up our training process
 - Supports Tensorflow and all dependencies needed to setup the training process

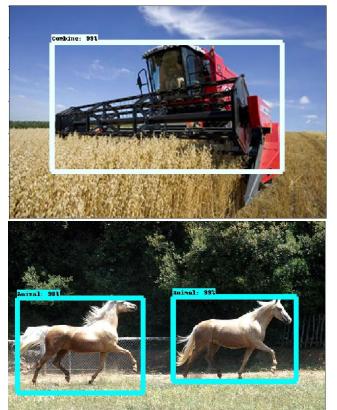
Challenges and Mitigations

Object Detection	Distance Measurement
 Setting up environment for training the neural network 	 Finding matching features in both video feeds
 Acquiring sufficient training and testing data 	 Issues with cameras
 Misclassification of objects with low quality videos 	Issues with camera calibration

Testing Environment


- Iowa State University Campus
- Testing image set (separate from training data)
- SmartAg's local test field with a modifiable tractor and test obstacles.

Object Detection Testing Strategy


- Static images
- Video feed
- Stereo camera, real-time video feed.

Object Detection Training Results

Number of Iterations

Testing results output images

Distance Testing Strategy

- Manually measure distance to an object
- Compare with results from distance system
- Repeat at different baseline and object distances

Distance Results

20 yards

30 yards

Demo Video

Right Camera

Thank you!

Questions?